Modelling and forecasting noisy realized volatility

نویسندگان

  • Manabu Asai
  • Michael McAleer
  • Marcelo C. Medeiros
چکیده

Several methods have recently been proposed in the ultra high frequency financial literature to remove the effects of microstructure noise and to obtain consistent estimates of the integrated volatility (IV) as a measure of ex-post daily volatility. Even bias-corrected and consistent (modified) realized volatility (RV) estimates of the integrated volatility can contain residual microstructure noise and other measurement errors. Such noise is called " realized volatility error ". As such measurement errors ignored, we need to take account of them in estimating and forecasting IV. This paper investigates through Monte Carlo simulations the effects of RV errors on estimating and forecasting IV with RV data. It is found that: (i) neglecting RV errors can lead to serious bias in estimators due to model misspecification; (ii) the effects of RV errors on one-step ahead forecasts are minor when consistent estimators are used and when the number of intraday observations is large; and (iii) even the partially corrected 2 R recently proposed in the literature should be fully corrected for evaluating forecasts. This paper proposes a full correction of 2 R , which can be applied to linear and nonlinear, short and long memory models. An empirical example for S&P 500 data is used to demonstrate that neglecting RV errors can lead to serious bias in estimating the model of integrated volatility, and that the new method proposed here can eliminate the effects of the RV noise. The empirical results also show that the full correction for 2 R is necessary for an accurate description of goodness-of-fit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realized Volatility in Noisy Prices: a MSRV approach

Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...

متن کامل

Modeling Gold Volatility: Realized GARCH Approach

F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...

متن کامل

Analysis of High Frequency Financial Data: Models, Methods and Software. Part II: Modeling and Forecasting Realized Variance Measures

A key problem in financial econometrics is the modeling, estimation and forecasting of conditional return volatility and correlation. Having accurate forecasting models for conditional volatility and correlation is important for accurate derivatives pricing, risk management and asset allocation decisions. It is well known that conditional volatility and correlation are highly predictable. An in...

متن کامل

Analysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach

Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...

متن کامل

Forecasting realized volatility: a review

Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012